David J. Wineland interview: Nobel Prize in Physics 2012


Uploaded by thenobelprize on 11.10.2012

Transcript:
[Adam Smith] Oh hello, I'm sorry to call so very early, may I speak to Professor David
Wineland please? [David Wineland] Yes, this is he.
[AS] Oh good morning, my name is Adam Smith, from the Nobel Prize website in Stockholm.
We
have a tradition of recording extremely short interviews with new Laureates. Would you be
able to speak for just a very few minutes? [DW] [Laughs] Sure. Okay.
[AS] Thank you very much indeed. First of all, of course, our sincere congratulations
on the award of the Nobel Prize. [DW] Oh, thank you.
[AS] I know it's extremely early in the morning, in fact the middle of the night there. What
were you doing when the call from Stockholm came?
[DW] Well, I was sleeping, and my wife got the call and woke me up.
[AS] [Laughs] Do you recall your initial reaction? [DW] Well, I mean a wonderful surprise, of
course. Yes, just amazing, sure. [AS] I imagine it's thrown the house into
some kind of disruption there. [DW] Well, we probably won't go back to sleep
for a while [Laughs]. Yeah. [AS] I guess there's the normal business of
life to run along side handling the press that are about to descend on you.
[DW] That's right, yeah. [AS] Your main interest, I gather, is developing
far more accurate clocks and that's what you've been devoted to in your career.
[DW] That's been the main theme. Yes, but there's been many spin-offs from that, including
the work on single atoms. [AS] And the trapping of single atoms, this
allows you to observe the superposition of quantum states?
[DW] That's right. [AS] This is basically observing, if you like,
the frontier between the classical world where the states don't superimpose and quantum states
where you can have multiple states at the same time.
[DW] Well, you might say that. That's right, yes.
[AS] How do you trap the atoms? [DW] Well, in our case the atoms are ions,
charged atoms. So we use electric fields to hold them in one place.
[AS] And then you use laser beams to manipulate them, is that correct?
[DW] That's right. [AS] Tell me more, please, about why need
more accurate clocks. [DW] Well, I think historically it's always
been true that when we've made better clocks there's always been an application. The main
use throughout history for the last many centuries is that clocks are used in navigation and
the better clocks we have the better navigation we can do. So that theme has carried through
for many centuries. As we make better clocks that's still been the primary application.
These days also the timing, the precise timing, you know, by good clocks is also used in communication.
But historically the main use has been and continues to be in navigation.
[AS] And how accurate are our most accurate clocks now? You have this mercury ion clock.
[DW] Currently the most accurate one is also in our lab. It's based on aluminium. And accuracy
meaning, you know, how well we can control the environmental effects and so on, is at
about one part in 10 to the 17. [AS] [Laughs] And how long can you keep it
running for? Is it indefinite? [DW] Well, so far these are laboratory devices.
So they do not work continuously, but they can work many hours and days to produce these
results. [AS] So the other application that is often
talked about is quantum computing. [DW] Right.
[AS] And does your work take us a step closer to quantum computing?
[DW] Well, I think you might say that. But in the same breath, you have to say that it's
a long way before we have a useful quantum computer. But I think most of us feel that
even though that is a long, you know, long way off before we can realise such a computer,
many of us feel it will eventually happen. It's primarily a matter of controlling these
systems better and better. Both Serge Haroche and I work on atoms. There's many other platforms
and condensed matter where this might happen. But wherever it happens I think we believe
that in the long run we should be able to [inaudible] well enough to realise such a
device. [AS] May I ask you, you work at the National
Institute of Standards and Technology and it seems to be a hotbed for the production
of new inventions and, indeed, Nobel Laureates. What is it that's so special about this place?
[DW] I think that, one of the things, you know, certainly is the people, my management.
People above me have been very supportive of these things. You know, it couldn't happen
without that. I think supportive management, and it helps being around very good people.
That's made the difference. [AS] Must be a very exciting place to be.
And, indeed, it must be extraordinarily exciting looking at this new frontier, being the first
to observe this new world of quantum states, which haven't been previously observable.
[DW] Well, I wouldn't say ...I wouldn't put myself in the first, you know, maybe we're
among the first. But there's many good people working on these things though. It's certainly
a big enterprise by now and many people are working on this in this area.
[AS] Sure, but there must a constant thrill of excitement, of feeling you're on uncharted
territory. [DW] Well, yeah, that's been really true in
science, to be near the leading edge, I suppose. Yeah, it's always been great, really exciting
to be in this field.

[AS] Thank you so much for talking to us. Again, apologies
for calling in the very middle of the night ...[both laugh] ... when you come to Stockholm
in December we have the chance to interview you at a greater length, which we very much
look forward to. But for now, I wish you the very best of luck with what will surely be
an exciting day. [DW] Well, thanks very much. All right, thank
you. [AS] Thank you. Nice to speak to you. Bye
bye. [DW] Bye bye.